Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10nm neck-width

نویسندگان

  • Jinwoo Oh
  • Hoyeon Yoo
  • Jaeyoo Choi
  • Jeong Yun Kim
  • Dong Su Lee
  • Myung Jong Kim
  • Jong-Chan Lee
  • Woo Nyon Kim
  • Jeffrey C. Grossman
  • Jong Hyuk Park
  • Sang-Soo Lee
  • Heesuk Kim
  • Jeong Gon Sona
چکیده

When graphene is shrunk into ~10 nm scale graphene nanoribbons or nanomesh structures, it is expected that not only electrical properties but also thermal conductivity and thermoelectric property are significantly altered due to the quantum confinement effect and extrinsic phonon-edge scattering. Here, we fabricate large-area, sub10 nm singleand bilayer graphene nanomeshes from block copolymer self-assembly and measure the thermal conductivity, thermoelectric and electrical transport properties to experimentally verify the effect of sub-10 nm quantum confinement, phonon-edge scattering and cross-plane coupling. Among the large variety of the samples, bilayer graphene nanomesh having 8 nm-neck width showed significantly low thermal conductivity down to ~78 W m K, which is the lowest thermal conductivity for suspended graphene nanostructures, and a high thermopower value of −520 μV K, while it still shows the comparably high carrier mobility. Classical and quantum mechanical calculations successfully supported our nanomesh approach, which can achieve high thermoelectric properties based on the significantly reduced thermal conductivity and higher thermopower due to the confined geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity

Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...

متن کامل

Ultra-low thermal conductivity in graphene nanomesh

Graphene nanomesh (GNM), a new nanostructure of graphene, has attracted extensive interest recently due to the promising chemical, electronic and photonic applications. In this paper, another important property e thermal conductivity is systematically investigated by using molecular dynamics simulations. The thermal conductivity (k) is found to be extremely low, up to more than 3 orders lower t...

متن کامل

Investigating the Longitudinal Optical Conductivity in Three-Layer Graphene Systems with Composes Mono-Bi-Bi and Bi-Mono-Bi and Bi-Bi-Mono

The longitudinal optical conductivity is the most important property for graphene-baseddevices. So investigating this property for spatially separated few-layer graphene systems analytically and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The density-density correlation function has been screened by the dielectric function using the random p...

متن کامل

Enhancing thermoelectric properties of organic composites through hierarchical nanostructures

Organic thermoelectric (TE) materials are very attractive due to easy processing, material abundance, and environmentally-benign characteristics, but their potential is significantly restricted by the inferior thermoelectric properties. In this work, noncovalently functionalized graphene with fullerene by π-π stacking in a liquid-liquid interface was integrated into poly(3,4-ethylenedioxythioph...

متن کامل

[1011] Scanning Thermal Microscopy on 2D Materials at cryogenic temperatures

Thermal transport in Graphene is of great interest due to its high thermal conductivity, for both fundamental research and future applications such as heat dissipation in electronic devices. Although, the thermal conductivity of graphene can reduce depending on the coupling to the substrate [1]. In this work, we report high-resolution imaging of nanoscale thermal transport in single and few lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017